

Emerald[®] Optical Node 4x4 Fully Segmentable Redundant Optics and Power Supplies

ACI Communications' Emerald is a very small form factor, fully featured, low power consumption 4x4 optical node that is capable of providing up to 57 dBmV output at 1002 MHz. The forward optical input level ranges from -3 dBm to +2 dBm. The node can have up to four segmented optical receivers and four segmented analog optical transmitters or 2 digitally multiplexed digital return modules. Plug-and-play forward/reverse frequency splits make for headache free extension of return path bandwidth when necessary.

The Emerald is part of ACI's common housing platform, which encompasses everything in ACI's main distribution product set, whether it be a single output line extender, a trunk amplifier, a bridger amplifier, a distribution amplifier node conversion, a 1x4 optical node or a 2x2 optical node.

Features

- Super compact, super light. Occupies less than 1/3 the volume of a typical 4x4 optical node
- Lowest power consumption node availableonly 73.5 watts in the maximum configuration.
- 4 driven ports four outputs allow 4 different coaxial paths out of the node just like its bigger, bulkier competitors
- CWDM ready and configurable internal outdoor rated Mux/Demux allows 4 forward and 4 reverse wavelengths to traverse a single fiber into and out of the node

- Plug-in bridger switching for managing the reverse path @ 0, -3.0, -6.0, -12.0 dB and open with active status monitoring (optional)
- Traffic Management Solutions include 2+2, 3+1, and "any direction" configurations
- FP, DFB and DFB CWDM transmitters available
- Redundant receivers, transmitters, and power supply (optional)
- 85% efficient 40/90 VAC switch-mode power supplies with built-in Triac surge protection

High Level 1x4 Block Diagram

High Level 2x2 Block Diagram

High Level 1x4 Redundant Block Diagram

High Level 2x2 Redundant or 4x4 Block Diagram

			(Forwar	rd and Re	everse S	egmental	Em ole Optica	erald ON 4-Output I Node 1002 MHz)
STATION PARAMETERS						<u> </u>	· · ·	,
	CONDITIONS	LINITS		SE				NOTES
Housing passband	CONDITIONS			SPECIFICAT		002		NOTED
	Any port worst coso	Amporos			15			
	Any port, worst case	Amperes	F 10	11	750	751 1000	751 1000	
	Time domain @ rated surrant should	IVIH2	5-10	7	0	751 - 1002	751 - 1002	
Hum modulation	Time domain @ rated current above	-dBC	55	1	U	60	60	
Station passband		MHZ			54 10 100	2		T
	worst case	-dB			17			Typical 18.0
Frequency range		MHz	54-8	370		8/1-1002		
Port to Port Isolation	Typical	-dB	70	0		60		
Test Points	I		-					
Test point type	Directional coupler	N/A			DC			
Test point level(s)		-dB	20.0 0.5					
Test point accuracy	Forward TP	±dB	0.5					
Frequency range	Reverse TP	MHz	5 to 40					
Test point accuracy	Reverse TP	±dB			0.5			
Frequency Range								
Station passband		MHz			54 to 100	2		
Station flatness - feeder out		±dB	0.75					
Station Gain	•							
Configuration			1:4	1:2 (X2)	1:1 (x4)	2+2	3+1	
Gain- Segmentation module			Unity	Unity	Unity	Unity	Unity	
Gain - Launch Amplifier	@ 1002 MHz	dB	37.5	37.5	37.5	37.5	37.5	
Gain control type	0 1002 1112	N/A	0110	0110	JXP Pads	0110	0110	
Gain control range		dB			15.0			
Gain control stops	Red value stops	dD			0.5			
Station Slapp	Fau value steps	uВ			0.0			
	Lizzan anvelizzan	-ID			IVD			
	Linear equalizers	dB				2.0		
Slope control range		dB	- 12.0 10 + 13.0					
Slope control steps	Equalizer value steps	dB	1.0 linear steps					
Operational Specifications	0.0000		[
Operational level - feeders	@ 1002 MHz	dBmV			52.2	0 / 17 0		
Operational slope	@ 54 / 550 / 750 / 870 / 1002 MHz	dB	0/ 3.0/ 12.0/ 14.0/ 17.2					
Operational optical input range		dBm	-3 to +2 Recommended optiminput level 0 dBm			Recommended optical input level 0 dBm		
Station Output Levels with a -3 dBm op	tical input							
Distribution out	@ 54 / 550 / 750 / 870 / 1002 MHz	dBmV	35.0 / 44.0 / 47.6 / 49.8 / 52.2					
Station Noise Figure - values for RE po	artion of node only. Complete value	e denendent	on ontical l	ink				
Station Noise Figure - Values for Ni po	Complete value	es dependent	* No s		1	17.2 dB slor	0	* LEO1= 0 dB
Noice figure (NE)	@ 54 MH-	db	0	б		16.0		
		uD dD	9.	5		14.0		
Noise figure (NF)	@ 550 MHz	dB	9.	5 7		11.0		
Noise figure (NF)	@ 1002 MHz	dB	9.	5		11.0		
Statio	n Distortions - values for RF Portio	n of node only	. Complete	e values de	ependent o	on optical lin	k.	
	550 MHz analog channel loadin 256 QAM at -6 dBc	g, 79 channel relative to its	s + 450 MH associated	lz digital ch visual cari	nannel load rier	ling,		
Reference levels	@ 54 / 550 / 650 / 870 / 1002 MHz	dBmV		35.0 / 44	1.0 / 47.6 /	49.8 / 52.2		
		N/A	Worst	Case		Typical		
Composite Triple Beat (CTB)		-dBc	70	0		72		
Cross Modulation (XMOD)		-dBc	64	4		66		
Composite Second Order (CSO -)	(Vc +0.75 & -1.25 MHz only)	-dBc	6	9		71		
Composite Second Order (CSO +)	(Vc +1.25 MHz onlv)	-dBc	6	9		71		
CIN	(-dBc	6	5		67		
Station Group Delay								
Group delay	Channel 2 (std)	nSec / 3.58 MHz			30			Typical 25
Group delay	Channel 3	nSec / 3.58 MHz			16			. , p. 301 20
Group delay	Channel 4	nSec / 3 58 MHz			10			
Group delay	Channel 5 & >	nSec / 3.58 MHz			3			

Confidential information contained in this document is subject to change without notice. Revision date: 9/26/15

	Emerald ON 4-Output (Forward and Reverse Segmentable Optical Node 1002 MHz)								
R	EVERSE SPECTRUM					(1 01Wald al		egmentable (
_		CONDITIONS	UNITS		s	PECIFICATION	s		NOTES
R	everse - General	Conditioned	onno						Noted
	Station passhand		MHz			5 to 12			
	Station flatness		+dB			1.0			
	Bridger switch control (optional)		dB		0.7	20 60 1208 or	00		
	Bridger Switch Control (optional)	Turinal	-05		0, .	3.0, 0.0, 12.0 & 0µ	ben		
	Port to Port isolation	i ypicai	-dB			60			
-	Configuration	liy)		4.4	0.4 (1/0)	4.4 ()(4)	0.0	2:4	
	Configuration			4:1	2:1 (X2)	1:1 (X4)	2+2	3+1	
	Gain- Segmentation Module		10	Unity	Unity	Unity	Unity	Unity	** ** **
	Gain Launch Amplifier	Minimum	dB	-2	-2	-2	-2	-2	"for one TX Configuration
	Gain control type		N/A			JXP Pads			
	Gain control steps	Pad value steps	dB			0.5			
R	everse - Station Input Levels								
	RF station input to node for 40 dBmV @ Laser TP	Minimum	dBmV			17			
R	everse - Noise Figure	L							
	Configuration			4:1	2:1 (X2)	1:1 (X4)	2+2	3+1	
	Station Noise Figure (w/EQ)		dB	16.5	12.0	10.0	12/10/10	16.5/10/10	
R	everse - Station Distortions @ 23 dl	BmV			1			1	
	Composite Second Order (CSO)	6 NTSC channel loading	-dBc			75			
	Composite Triple Beat (CTB)	6 NTSC channel loading	-dBc			80			
	Cross Modulation (XMOD)	6 NTSC channel loading	-dBc			80			
		o more chainer loading	420						@ 10.0 dB optical loss
	Noise-to-Power Ratio (NPR)	Noise loading	dB		т	ypical >40.0 / 13.	0		(6.0 dB fiber +4.0 dB flat loss)
									@ -51 dBmV/Hz
R	everse - Station Group Delay		1						
	Group delay	5 MHz	nSec / 1.5 MHz			36			
	Group delay	7 MHz	nSec / 1.5 MHz			16			
	Group delay	10 MHz	nSec / 1.5 MHz			4			
	Group delay	35 MHz	nSec / 1.5 MHz	25					
	Group delay	38.5 MHz	nSec / 1.5 MHz			25			
P	ower Requirements:				1			T	Γ
	Station configuration	140°E (40°C to 160°C) @ 0	0.1/001		2X2		2+2	3+1	
	Over temperature range of -40 P to	+140 F (-40 C t0 +60 C) @ 9	U VAC)	(1KA & 11A)	(2KA & 21A)	(4KA & 4 1A)	70.5	70.5	
		WOIST Case	VV	00.7	70.5	66.0	73.5	70.5	
~			1/40			4000			
6	Input ranges		VAC			40 - 90			
C	@ 40.)/40	Maximum	•	4.00	4.45	4.44	4.00	4.45	
	@ 40 VAC	Waximum	A	1.09	1.15	1.11	1.20	1.15	
	@ 50 VAC	Maximum	A	1.23	1.30	1.25	1.35	1.30	
	@ 60 VAC	Maximum	A	1.40	1.48	1.43	1.54	1.48	
	@ 70 VAC	Maximum	A	1.63	1.73	1.67	1.80	1.73	
	@ 80 VAC	Maximum	A	1.96	2.07	2.00	2.16	2.07	
\square	@ 90 VAC	Maximum	A	2.45	2.59	2.50	2.70	2.59	
E	nvironmental								
	Operating temperature		°F (°C)		-40	to +140 (-40 to +	60)		
	RF output stability over temperature		±dB			0.5			
P	hysical								
	Dimensions (H X W X D)		In. (cm)		6.75 X 14.2	5 X 9 (17.15 X 36.	20 X 22.86)		
	Weight		lbs. (kg)			20 lbs			

Confidential Information contained in this document is subject to change without notice. Revision date: 9/26/15

Created By:	Order Date:		
ORDEF	RING MATRIX		November 5, 20
2	Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 NUMBER E Image: State Sta	15 16 12	Mux/DeMux or WDM (For a 1X2 Mux or WDM use position 12) MUX A -Use for 2:2, or ports 1 & 3 for 4:4 MUX B Ports 2 & 4 for 4:4 or 2:2, 2+2, & 3+1 With Optics Redundancy 0 = None A = FWD Path 1310, 1431; REV path 1451, 1551 nm & common B = FWD path 1290, 1295; REV path 1591, 1611 nm & common C = FWD path 1291, 1293; REV path 1471, 1491 nm & common W = WDM 1310/1550 nm re =
3 Connector Split	4 Transmitters installed 4 Receivers installed Not TX or RX redundancy capable DIPLEX FREQUENCY SPLIT & CONNECTOR TYPE $4 = 42/53$ A = $42/53$ $5 = 55/70$ B = $55/70$ $6 = 65/85$ C = $65/85$ $8 = 85/105$ D = $85/105$ H = $85/105$ H = $85/105$		
85 87 89 811	TRANSMITTER 1 - Primary 4:1, Ports 1 & 3 for 2:1 (X2) or Port 3 for 4:1 TRANSMITTER 2 - Secondary 4:1 or Ports 2 & 4 for 2:1 (X2) or Port 3 for 4:1 TRANSMITTER 3 - Secondary Ports 2 & 4 for 2:1 (X2) or Port 3 for 4:1 TRANSMITTER 4 - Secondary Ports 2 & 4 for 2:1 (X2) or Port 3 for 4:1 TYPE FP & DFB D0 = None 19 = Channel 19 - 1562.23nm D0 = Uncooled 1310 nm 1.0 mW FP 20 = Channel 20 - 1561.42mm H0 = Uncooled 1310 nm 1.0 mW FP 21 = Channel 21 - 1560.61nm D0 = Uncooled 1310 nm 0.0 mW DFB 23 = Channel 23 - 1558.98mm B0 = Uncooled 1310 nm 2.0 mW DFB 24 = Channel 24 - 1558.17nm B0 = Uncooled 1310 nm 0.0 mW DFB 25 = Channel 25 - 1557.36mm B0 = Uncooled 1310 nm DFB CWDM (2.0 mW) 28 = Channel 28 - 1556.76mm B0 = Uncooled 1491 nm DFB CWDM (2.0 mW) 29 = Channel 29 - 1554.13mm B0 = Uncooled 1491 nm DFB CWDM (2.0 mW) 30 = Channel 30 - 1553.33mm B0 = Uncooled 1511 nm DFB CWDM (2.0 mW) 32 = Channel 32 - 1551.72mm B0 = Uncooled 1511 nm DFB CWDM (2.0 mW) 33 = Channel 31 - 1552.27mm B0 = Uncooled 1511 nm DFB CWDM (2.0 mW) 33 = Channel 31 - 1552.57mm DUncooled 1511 nm DFB CWDM (2.0 mW) 33 = Channel 31 - 1552.57mm DUncooled 1	0 GHz Spacing 38 = Char 39 = Char 40 = Char 42 = Char 43 = Char 44 = Char 45 = Char 47 = Char 48 = Char 49 = Char 50 = Char 51 = Char 53 = Char 53 = Char 54 = Char 55 = Char 56 = Char	nnel 38 - 1546, 92nm 57 = Channel 57 - 1531.90nm nnel 39 - 1546, 12nm 58 = Channel 58 - 1531.12nm nnel 40 - 1545, 32nm 59 = Channel 59 - 1530.33nm 60 = Channel 60 - 1529.55nm 61 = Channel 61 - 1528.77nm nnel 42 - 1542, 94nm 62 = Channel 62 - 1527.99nm nnel 43 - 1544.53nm 64 = Channel 62 - 1527.99nm nnel 44 - 1542, 94nm 63 = Channel 64 - 1528.77nm nnel 45 - 1541.35nm 64 = Channel 64 - 1527.22nm nnel 45 - 1540.56nm Sub-octave SR nnel 48 - 1538.98nm Reverse 4X Module (See Note 1) (Enter same letter and number for positions 4-11) 111 TX TXZ TX3 TX4 nnel 51 - 1536.61nm R1 R1 R1 R1 R1 R1 R1 4:4 Module @ 1550 nm X4 nnel 54 - 1534.25nm nnel 56 - 1532.68nm 1634.25nm

3 The custom option H to have the high output of 42.0/60.0 dBmV (54/1002 MHz) is only available in a 1x4 configuration with 18.0 dB of Slope at 1002 MHz.

ACI Communications, Inc. 23307 66th Avenue South Kent, WA 98032

Rev F 9-29-2015 Printed in U.S.A. ACI Communications, Inc. reserves the right to discontinue the manufacture or change specifications without prior notice on any parts illustrated in this data sheet. Registered trademarks are the property of their respective owners